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Abstract. We study two types of simple Boolean networks, namely two loops with a cross-link and one loop
with an additional internal link. Such networks occur as relevant components of critical K = 2 Kauffman
networks. We determine mostly analytically the numbers and lengths of cycles of these networks and find
many of the features that have been observed in Kauffman networks. In particular, the mean number and
length of cycles can diverge faster than any power law.

PACS. 89.75.Hc Networks and genealogical trees – 05.65.+b Self-organized systems – 89.75.Hc Networks
and genealogical trees

1 Introduction

The study of random Boolean networks is of great inter-
est since these networks are one of the simplest models
of genetic regulatory networks. Although they were in-
trocuded already 40 years ago by Kauffman [1], they are
still poorly understood. Due to increasing computational
power, it was recently discovered that old assumptions
about the properties of the cycles of these networks have
been wrong, see [2–4]. To better understand Boolean net-
works is an important requirement before being able to
study successfully more realistic, but also more compli-
cated models.

Random Boolean networks are directed graphs consist-
ing of N binary nodes, each having inputs from K ran-
domly chosen other nodes. To each node, a Boolean func-
tion is assigned that gives the updating rule of the node
as function of input values. The network is updated syn-
chronously, and starting from an initial state, the network
eventually reaches a periodic trajectory (a cycle). The sit-
uation K = 2 is particularly interesting since it is the
critical point between the ordered regime (where only a
finite number of nodes are not frozen for N → ∞) and
chaos (where a small perturbation spreads through the
entire network). For this reason, it was believed for a long
time that the number and mean length of cycles of critical
networks increases as a power law with network size N .
However, recent computer simulations [2] as well as ana-
lytical calculations [5] indicate that the number of cycles of
critical Boolean networks increases faster than any power
law with N . So far, none of these studies provides direct
intuitive insights in how this feature emerges from the net-

a e-mail: viktor@fkp.tu-darmstadt.de

work structure. Additionally, there is yet little agreement
on the behavior of the mean length of cycles.

This work aims at understanding better how such vast
numbers and sizes of cycles can emerge. For this purpose,
we refer to the concept of relevant nodes as defined in [6].
These are those nodes of the network that can influence
themselves via a loop of connections. Their state under-
goes therefore a non constant sequence of values at least
on some cycles. The network that remains after remov-
ing the irrelevant nodes consists only of loops and links
between and inside loops. Most nodes are frozen [7], and
recent work [2] suggests that the number of relevant nodes
increases as N1/3 with the number of nodes. The reduced
network that contains only the relevant nodes determines
the number and lengths of cycles in the full network. It
has only slightly more than one input per node. However,
little is yet known about the number of cycles even on
the simplest possible relevant networks, apart from sim-
ple loops. We therefore focus in this article on connected
relevant networks that have one node with two inputs.
Such networks consist either of two loops connected by a
chain of nodes, or of one loop with an additional chain of
nodes within the loop. We shall see that the mean num-
ber of cycles on these simplest relevant networks increases
faster than any power law with the number of nodes of
these networks, and for some of these networks also the
mean cycle length increases faster than any power law.
Since it can be expected that these simple networks occur
within the relevant network of critical Boolean networks,
we now understand better properties of cycles in critical
networks.

The outline of this paper is as follows: In the next
section, we briefly review the properties of cycles on simple
loops. In Section 3, we study the cycles of two cross-linked
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loops. In Section 4, we focus on loops with one additional
link, and in the final section, we discuss our results.

2 Simple loops

Trivial loops consisting of N nodes are the simplest net-
works. Each node has one input, just as in a K = 1 net-
work, and the nodes are connected to form a loop. Since we
are only interested in systems consisting of relevant nodes,
we consider the case where out of the 4 possible Boolean
functions only the two nontrivial ones occur. These are
“truth”, which simply copies the value of the input at the
update, and the Boolean negation.

A loop with n negations can be mapped bijectively
onto a loop with n − 2 negations by replacing the two
negations with truth and by inverting the state of all nodes
between these two links. For this reason, we need to con-
sider only loops with zero negations and loops with one
negation. We refer to these two situations as the “even”
and “odd” case respectively. The dynamics on these loops
has the following obvious properties, see also [8,9]:

1. After N updates, a loop with an even number of nega-
tions returns to the same state. A loop with an odd
number of negations returns to the same state af-
ter 2N updates.

2. Consequently, each state is on a cycle, and the mean
cycle length, multiplied by the number of cycles, is 2N .

3. No cycle can be longer than N (even) or 2N (odd).
Loops with zero negations have 2 fixed points (all 1
or all 0), and loops with one negation have a cycle of
length 2 (alternating 0 and 1).

4. If N is a prime number, the number of cycles is
given by

CN =






2 + 2N−2
N even case

1 + 2N−2
2N odd case.

(1)

This result does not apply to an odd two-node system
N = 2. In this case, there is one cycle that comprises
all 4 states.

5. If N is not a prime number, any divisor of N (two
times any divisor of N) is also a cycle length. There
exist more shorter cycles, and therefore the number of
cycles is larger than the above expression.

To summarize, simple loops have a mean cycle length of
the order of N , and an average number of cycles that
increases as 2N/N , which is faster than any power law
in N .

3 Two loops with cross-link

We next consider two loops of size N1 and N2 with a
cross-link (see Fig. 1). We denote with Σ the node with
two inputs, and with G1 and G2 the two nodes it receives
its input from. Again, we consider only the case where

Σ

G2

G1

N1 N2

Fig. 1. Two loops with a cross-link.

all links are relevant. Without loss of generality, the first
loop has only truth functions or one negation. The second
loop has truth functions at all nodes apart from Σ, and
one of the following three Boolean functions at Σ: f11,
which is 0 if and only if G1 = 0 and G2 = 1; f14, which
is 0 if and only if both its inputs are 0; and finally the
function f9, which takes the value G2 if G1 = 1 and the
inverted value of G2 if G1 = 0. The first two functions are
canalyzing functions. This means that there exists at least
one input configuration for which inverting one input does
not change the output. The third function is reversible,
since to each state the network has a unique predecessor.
Each state of the system is therefore on a cycle, and the
mean cycle length, multiplied by the number of cycles, is
2N1+N2 . The other six canalyzing functions and the second
reversible function need not be considered, since networks
with these functions can be mapped on networks with the
given three functions by inverting the states of all nodes
in the first loop, or by inverting the states of all nodes.

Networks with m additional nodes on the cross-link
can be mapped on those with a direct link by connecting
node number m (counting clockwise starting at G1) of the
first loop directly to Σ.

3.1 Case 1: N1 and N2 are prime numbers

In the following, we focus on the case that N1 and N2 are
prime numbers (with N1 �= N2). The first loop provides
a periodic input to Σ of the period p1 = N1 or 2N1 or 1
or 2. Loop 2 behaves like a single loop, where the Boolean
function at Σ changes between truth and negation (f9)
according to a pattern of period p1, or between negation
and 1 (f11), or between truth and 1 (f14). Loop 2 returns
to the same state no later than after 2p1N2 updates. The
longest cycle has therefore the length 4N1N2. This length
is reached for an odd loop 1 and the function f9. For the
special case N2 = 2 the longest cycle has the length 4N1.

If the Boolean function at Σ is canalyzing, most results
can be derived from the observation that for p1 > 1 the
first input to Σ is 1 every 2N1 time steps, and possibly
more often. Let us first consider the function f14. A 1
at G2 will lead again to a 1 at G2 after nN2 updates,
for any integer n. A 0 at G2, combined with a 0 at G1,
will lead to a 0 at G2 after N2 updates. However, at the
latest after n = 2N1 update cycles of length N2, this 0
will become a 1. Therefore, loop 2 will be frozen to all 1
after this time. The cycles of the network have length p1

if p1 > 1. If p1 = 1, we obtain cycles of length N2 and 1.
We conclude that if there is a function f14 at Σ and no
negation in loop 1, the system has (2N2 − 2)/N2 cycles
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of length N2, three cycles of length 1 and (2N1 − 2)/N1

cycles of length N1. If there is a function f14 at Σ and
one negation in loop 1, we have one cycle of length 2 and
(2N1 − 1)/2N1 cycles of length 2N1. In this case only the
nodes in the first loop are relevant nodes if the loop is odd,
and the second loop is irrelevant.

Next, let us consider the function f11 at Σ. If p1 = 1
and loop 1 is in state 1, the entire system is frozen in
state 1. If loop 1 is in state 0, loop 2 is like an independent
loop with one negation. If p1 = 2, the entire system has
period 2. If p1 = N1 or 2N1, the first loop enslaves the sec-
ond loop, completely determining its state and wiping out
every memory of its initial state. Consequently, the cycle
length is N1 (2N1) for an even (odd) first loop. We con-
clude that if there is a function f11 at Σ and no negation in
loop 1, there is one cycle of length 1, one cycle of length 2,
(2N2 − 2)/2N2 cycles of length 2N2, and (2N1 − 2)/N1 cy-
cles of length N1. If loop 1 has one negation, there is one
cycle of length 2 and (2N1 − 2)/2N1 cycles of length 2N1.

To summarize so far, the number of cycles for a system
with N1 and N2 being odd prime numbers and with a
canalyzing function at Σ is

Cf14
N1,N2

=






3 + 2N1−2
N1

+ 2N2−2
N2

even loop 1

1 + 2N1−2
2N1

odd loop 1

Cf11
N1,N2

=






2 + 2N1−2
N1

+ 2N2−2
2N2

even loop 1

1 + 2N1−2
2N1

odd loop 1.
(2)

(These equations are modified if one of the loop sizes is
Ni = 2. The terms with 2Ni in the denominator then have
to be dropped.) For large N1 and N2 the mean number of
cycles grows as 2Nmax/Nmax with Nmax being the larger
of the two loop sizes, and the mean cycle length increases
linearly with Nmax.

Finally, let us consider the function f9 at Σ. If an even
loop 1 is frozen in state 1 (0), loop 2 behaves like an even
(odd) independent loop. We get 2 fixed points (one cycle of
length 2) for the entire network and (2N2−2)/N2 cycles of
length N2 ((2N2 −2)/2N2 cycles of length 2N2). If an odd
loop 1 is on the cycle of length 2, the two loops have one
cycle of length 4 and (2N2 − 2)/2N2 cycles of length 4N2.

If loop 1 has period p1 = N1 > 1 with an even number
of 0s, the state of G2 will be the same every N1N2 time
steps. For a given cycle with period N1 on loop 1, two cy-
cles with period N1 of the entire system can be constructed
in this case as follows. Begin by fixing the initial value of
one node in loop 2. After one time step, the next node on
loop 2 (in clockwise direction) will be the one that is fixed,
etc. Update the system for N1 time steps and observe the
value that will be fixed then, and choose this to be the ini-
tial state of that node. After iterating this procedure N2

times, one has fixed the initial state of all N2 nodes, and
one returns to the initial node. Due to the even number
of zeros on loop 1, the initial node will then have again
its initial value. We have thus created an initial state that
lies on a cycle of length N1. A second cycle of length N1 is

created by starting with the second possible initial value.
All other cycles have the period N1N2.

If loop 1 has period p1 > 1 with an odd number of 0s,
which is always the case for an odd loop 1, the state of G2

will be the same every 2p1N2 time steps. For a given cy-
cle with period p1 on loop 1, a cycle with period 2p1 of
the entire system can be constructed as above, since two
subsequent periods of loop 1 have an even number of 0s.
The other cycles have length 2N2p1.

Our considerations lead to the following numbers and
lengths of cycles in systems with a reversible function
at Σ:

length 1 2 N2 2N2 N1 2N1

number 2 1 2N2−2
N2

2N2−2
2N2

2N1−2
N1

2N1−2
2N1

length N1N2 2N1N2

number (2N1−2)(2N2−2)
2N1N2

(2N1−2)(2N2−2)
4N1N2

for an even loop 1, and

length 4 4N2 4N1 4N1N2

number 1 2N2−2
2N2

2N1−2
2N1

(2N1−2)(2N2−2)
4N1N2

for an odd loop 1. (Again, the results are modified if a loop
has size 2. For N1 = 2 and an even loop 1, there is no cycle
of length N1 or N1N2, and the cycles of length 2N1 and
2N1N2 occur twice as often. For an odd loop 1, the first
two columns vanish, and the other two cycle numbers are
doubled. For N2 = 2 and an even loop 1, Columns 3, 5, 7
vanish, the cycle numbers in Columns 4, 6, 8 are doubled.
For an odd loop 1, Columns 1 and 3 vanish, and the other
cycle numbers are doubled.)

The mean number of cycles diverges as

Cf9
N1,N2

�





3·2N1+N2

4N1N2
even loop 1

2N1+N2

4N1N2
odd loop 1

(3)

and the mean cycle length increases as N1N2. Apart from
the prefactor, this result is the same as for two uncoupled
loops.

3.2 Case 2: N1 = N2 ≡ N

We call this case “resonant”, because here one has sub-
stantially more cycles for canalyzing fs in comparison to
the case N1 �= N2 with N1, N2 of the same order of mag-
nitude. Since each node value of loop 2 can be changed
at Σ by exactly one node value of loop 1, the system can
be decomposed into N independent systems of 2 nodes,
where the first node receives input from itself (negation
for an odd loop 1, otherwise truth function), and the sec-
ond node receives input from both nodes. These N sys-
tems are updated one after another. If the first loop is
even and the Boolean function at Σ is f14, the 2-node
system has three cycles of length 1. The complete system
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has therefore 3 cycles of length 1 and 3N−3
N − δN,2 cycles

of length N .
If the first loop is odd and the Boolean function at Σ

is f14, the 2-node system has one cycle of length 2. The
complete system has therefore one cycle of length 2 and
2N−2
2N cycles of length 2N . The first loop enslaves the sec-

ond loop. (For N = 2, there is only one cycle of length 4.)
If the first loop is even and the Boolean function at Σ

is f11, the 2-node system has one cycle of length 1 and
1 cycle of length 2. The complete system has therefore one
cycle of length 1, one cycle of length 2, and 3N−3

2N cycles
of length 2N . (For N = 2, there are only two cycles of
length 4.)

If the first loop is odd and the Boolean function at Σ
is f11, the first loop enslaves the second loop. The com-
plete system has therefore one cycle of length 2 and 2N−2

2N
cycles of length 2N . (For N = 2, there is only one cycle
of length 4.)

If the first loop is even and the Boolean function at Σ
is f9, the 2-node system has two cycles of length 1 and
one cycle of length 2. The complete system has therefore
two cycles of length 1, one cycle of length 2, 2N−2

N cycles
of length N (none for N = 2), and 4N−2N−2

2N (3 for N = 2)
cycles of length 2N .

If the first loop is odd and the Boolean function at Σ
is f9, the 2-node system has one cycle of period 4. The
complete system has therefore one cycle of period 4 and
4N−4
4N cycles of period 4N . (For N = 2, there are only two

cycles of length 8.)
For large N , the number of cycles diverges as

Cf9
N,N � 4N

2N
or

4N

4N

Cf14
N,N � 3N

N
or

2N

2N

Cf11
N,N � 3N

2N
or

2N

2N
(4)

for an even or odd first loop, and the mean cycle length
increases linearly in N . Our computer simulations are in
agreement with the analytical results.

3.3 Case 3: General N1 and N2

If N1 and/or N2 are not prime numbers, there are more
cycles. First, let us consider the case that N1 and N2 have
no common divisor and that loop 1 is even if N2 is even.
The above listed cycle lengths 1, 2, N1, N2, 2N1, 2N2,
4N1, 4N2, N1N2, 2N1N2, 4N1N2 still occur, but there ex-
ist additional cycle lengths, which are obtained by replac-
ing N1 and/or N2 with one of its divisors. The numbers
of cycles with lengths from the original list will decrease
accordingly.

In the remainder of this section we consider the more
interesting case that the cycle length of loop 1, P1, and N2

have a greatest common divisor g > 1. This is always the
case if N1 and N2 have a common divisor. The special case
N1 = N2 was treated in the previous subsection.

The least common multiple of P1 and N2 is P1N2/g
and, for a given P1, the largest possible cycle length is
2P1N2/g and the smallest possible cycle length is P1. The
values of one period of loop 1 and the nodes of the sec-
ond loop split into g independent subsystems with P1/g
values in each periodic sequence from loop 1 at G1, and
N2/g nodes from the second loop. One subsystem is up-
dated at a time and takes place of the next one in the
sequence. For a handy picture of the subsystems one can
imagine the sequence of period P1/g as being produced
by an even loop with P1/g nodes. In the case of an odd
loop 1 and an even P1/g, the second half of the period of
such a new loop 1 in a subsystem is the inversion of the
first half. In the case of an odd loop 1 and an odd P1/g the
subsystems come in pairs; to each subsystem with an odd
number of 0s in the periodic sequence from loop 1 there
exists a subsystem with an even number of 0s. The 0s and
1s are interchanged. We call these subsystems complemen-
tary.

The numbers and lengths of cycles of a subsystem
can be calculated according to the rules outlined in the
previous subsections. Let us now point out some rules
that help determining the possible cycle lengths of the
entire system if the cycles in the subsystems are given,
their lengths be denoted by p1, p2, . . . If each subsys-
tem is on a different cycle, the cycle length of the entire
system is T = LCM(p1g, p2g, . . . ). LCM stands for the
least common multiple. Otherwise shorter cycles can ex-
ist. For example, if all subsystems are on the same cycle,
p1 = p2 = · · · = p, the phase shifts between subsystems
can be arranged in such a way that overall periods shorter
than pg occur. These periods can be any divisor of pg that
is a multiple of p, but not a multiple of g.

Now, let us turn to the number of cycles. We first con-
sider the reversible Boolean function f9 at Σ. If N1 and N2

are large and for an even first loop, it is sufficient to con-
sider P1 = N1, so that each subsystem is approximately
with probability 0.5 on a cycle of length N1/g · N2/g and
with probability 0.5 on a cycle of length N1/g · 2N2/g.
The subsystems are almost certainly on different cycles.
The probability that the overall cycle length is N1N2/g
is 0.5g, and the probability that the overall cycle length is
2N1N2/g is (1−0.5g). We can neglect the cycles of length
N1N2/g, since their number is 0.5g/(1−0.5g) times smaller
than that of the cycles of length 2N1N2/g. The next ne-
glected contributions to the number of cycles would be
from cycles of lengths 2N2, N2, 2N1, N1.

If the first loop is odd, we can restrict ourselves to
looking at P1 = 2N1. Each subsystem or each pair of
complementary subsystems is with probability near to 1
on a cycle of length 2 · 2N1/g ·N2/g, and the overall cycle
length is 4N1N2/g. In our estimation for the number of
cycles the most significant contributions we neglect come
from cycles of lengths 2P1 with P1 = 2N1 and 4N2/g with
P1 = 2. Equation (3) for the mean number of cycles for
large N1 and N2 becomes now

Cf9
N1,N2

�





g
2

2N1+N2

N1N2
even loop 1

g
4

2N1+N2

N1N2
odd loop 1.

(5)
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For canalyzing Boolean functions, there is now a big
difference between the case of an even loop 1 and an odd
loop 1. If loop 1 is odd for odd N2 it always enslaves
the second loop, and the value of N2 does not matter.
We obtain no new results beyond what has been writ-
ten in the previous subsections. The majority of cycles
have length 2N1. Their number is of the order of 2N1/2N1.
We obtain this and the following results systematically by
combining the results for individual subsystems. For in-
stance, for even N2 and P1 = 2 one of the two subsystems
is all 1 and the other one is all 0. For the function f14

at Σ we then get of the order of 2N2/2/(N2/2) cycles of
length N2. For f11 we get of the order of 2N2/2/N2 cycles
of length 2N2.

For an even loop 1 the change in cycle size and number
is dramatic compared to the case where N1 and N2 are
prime numbers. In particular, cycles of lengths N1N2/g
and 2N1N2/g appear now, since some subsystems may
have the period N1/g and some subsystems the pe-
riod N2/g. Let us first consider the function f14. For
large N1 and N2, each subsystem is almost certainly in
one out of approximately 2N1/g states belonging to cycles
of length N1/g or in one out of 2N2/g states belonging to
cycles of length N2/g. The number of cycles for large N1

and N2 is therefore

Cf14
N1,N2

� g

N1N2

(
2N1/g + 2N2/g

)g

. (6)

A more detailed treatment leads to the following expres-
sion for this quantity

Cf14
N1,N2

� g
(
2N1/g + 2N2/g − 1

)g

N1N2

+

(
2N1/g + 1

)g

N1
+

(
2N2/g + 1

)g

N2
, (7)

where the dominant cycles of the lengths N1N2/g, N1

and N2 have been taken into account.
Finally, let us consider the Boolean function f11.

If N1/g is even, the longest cycle length is N1N2/g, oth-
erwise it is 2N1N2/g. We have therefore

Cf11
N1,N2

�






g(2N1/g+2N2/g−1)g

N1N2
+ (2N1/g+1)g

N1

+(2N2/g+1)g

2N2
even N1/g

g(2N1/g+2N2/g−1)g

2N1N2
+ (2N1/g+1)g

2N1

+(2N2/g+1)g

2N2
odd N1/g.

(8)

As an illustration of the findings of this subsection, we
show in Figure 2 the results of three numerical evaluations
of the cycles of a two-loop system with g = 5. Compared to
two independent loops, for which the largest cycle length
is N1N2/g, the longest cycle can now have up to four times
this length. When the Boolean function at Σ is canalyzing,
the cycles are comparatively shorter and there are more
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Fig. 2. Three examples of numerical results for the number of
cycles as function of their length for two loops with a cross-link,
with an even first loop.

of them. In any case there exist characteristic dominant
cycle lengths. The total number of cycles increases faster
than any power law with N1 and N2, but the mean cycle
length increases linearly in N1 and N2.

4 Loops with one additional link

Now let us turn to a loop of size N = L + M + 2 with one
additional link, as shown in Figure 3. We denote with Σ
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Σ

L M

G2

G1

Fig. 3. A loop with an additional link.

the node with two inputs, and with G1 and G2 the two
nodes it receives its input from. Again, we consider only
the case where all links are relevant. Without loss of gen-
erality, we can assume that the Boolean functions at all
nodes apart from Σ are truth functions. At Σ, we shall
consider the reversible function f9, and the canalyzing
functions f14, f11, f4, and f1. f4 is 0 if the input from G1

is 1, and otherwise it copies the values of the second input.
f1 yields 1 if and only if both inputs are 0. Systems with
the other Boolean functions can be mapped on systems
with these functions by inverting the states of all nodes.
We count the nodes counterclockwise, assigning to G2 the
index x = 1, to G1 the index x = L + 1, and to Σ the
index x = N ≡ 0.

A system with n < L nodes on the connection from G1

to Σ can be mapped on the system shown in Figure 3
by connecting node number L + 1 − n directly to Σ. In
the following, we will first consider the four canalysing
functions, and then the reversible function. We will use
analytical calculations as well as computer simulations.

If g > 1 is the greatest common divisor of N
and L, the system splits into g independent subsystems
with N/g nodes each. The cycle lengths of the entire sys-
tem can be obtained from the cycle lengths of the subsys-
tems by the same considerations as in the previous section.

4.1 Case 1: Boolean function f14 at Σ

We first consider the simplest case, where an output 0 is
only obtained if both inputs are 0. Starting from a random
initial condition, the initial number of 0s cannot increase.
There are two fixed points, all 0 and all 1. Every 0 needs
another 0 L steps back along the loop links in order to sur-
vive. Nontrivial cycles occur only if the greatest common
divisor of N and L is g > 1. There are then g independent
sets of nodes, which can be assigned a value 0 or 1. There
are 2g−2 states on cycles of length g or one of its divisors.
The number of cycles, averaged over L and over a small
interval of N values increases at least as 2N/2/N2 with N ,
since for even N and L = N/2 we have g = N/2.

4.2 Case 2: Boolean function f4 at Σ

The next canalyzing function we consider yields a 0 if the
first input is 1, and copies the value of the second input
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Fig. 4. Mean number of cycles per network for the canalyzing
function f4 at Σ, averaged over all possible values of L.

otherwise. Starting from a random initial condition, each
node value 0 comes back to the starting location without
change after one rotation (i.e., after N time steps). On
a cycle, each 1 at G2 must be followed by a 0 at G1, L
nodes back, otherwise it would disappear as it passes Σ.
Let us consider the sequence of states of G2 every L time
steps on a cycle. If g is the largest common divisor of L
and N , there are g independent sequences of length N/g.
For the number φN of different sequences of period N ,
where each 1 is followed by a 0, one obtains the recursive
equation

φN = φN−1 + φN−2,

since a sequence of length N can be obtained by adding
a 0 after the first 1 of a sequence of length N − 1 (or at
the end, if there is no 1) or by adding a 01 after the first 1
of a sequence of length N − 2 (or a 00 at the end, if there
is no 1). The initial condition is φ1 = 1 and φ2 = 3. The
exact solution of the recursion relation is φN = τN +
(−1/τ)N , where τ = (1 +

√
5)/2. For large N , this is

approximated by φN = τN . Consequently, if N and L
have no common divisor, we expect the number of cycles
to be

Cf4
N � e0.48121N − 1

N
+ 1. (9)

Otherwise, the number of cycles is somewhat larger. These
results are confirmed numerically, as shown in Figure 4,
where averaging over different L has been performed.

4.3 Case 3: Boolean function f1 at Σ

Now we continue with a more complex case: the canalyz-
ing function f1 yields 1 if and only if both inputs are 0.
Consequently, if one of the two inputs is 1, the output
is 0. We will see that there are again exponentially many
cycles.

First, let us consider the fate of a node value 1 on a cy-
cle as we iterate the network. This 1 moves from site x to
site x−1 during one time step. As it reaches the node G1,
it produces a 0 at Σ. When it reaches G2, it produces
another 0 exactly L sites behind the first one. These two
zeros will produce a value 1 as soon as they reach the
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nodes G1 and G2 respectively. Thus, a 1 comes back to its
original place after 2N − L steps. In the same way, each
pair of 0s, L steps apart from each other, will come back
to their original places after 2N − L steps. One can eas-
ily see that every 0 on a cycle must be a part of such a
pair: consider a 1 that has just been created at site Σ. If
after L time steps there is a 0 at Σ, there must be at the
same time a 1 at G1. After L additional time steps, there
is consequently a 0 at Σ. We conclude that the period of
the cycles is 2N − L or one of its divisors. For L = 1,
the number of cycles is equal to the number of sequences
of length N , where 0s always occur in pairs, with an ap-
propriate boundary condition at Σ. The number of such
sequences φN satisfies the recursion relation

φN = 2φN−1 − φN−2 + φN−3, N ≥ 4. (10)

This relation can be explained as follows: A sequence of
length N is constructed by inserting a 1 or a 0 after the
first 1 in a sequence of length N −1 (giving φN = 2φN−1).
If there was another 1 after the first 1, insertion of a 0
is forbidden. The number of such forbidden sequences
is φN−2, since they are obtained by inserting a 1 after
the first 1 in a sequence of length φN−2. We therefore
have to subtract φN−2. In order to construct sequences
where the first 1 is followed by 001, we insert these 3 bits
after the first 1 in a sequence of length N − 3. This
means that we have to add φN−3. Sequences that con-
tain all 0 or one 1 at the end are constructed from the
all 0 sequence of length N − 1 by inserting a 0 or a 1.
Taking into account the boundary condition, the start-
ing values are φ1 = 0, φ2 = 3, φ3 = 5. The exact solu-
tion of equation (10), together with the boundary condi-
tions, is φN = τ(τ − 1) cos(φN−φ/2)

cos(φ/2) (τN−1 − (τ − 1)N−1),
where τ and (τ − 1)e±iφ are the solutions of the equation
x3 − 2x2 + x − 1 = 0. For large N the following approxi-
mation holds: φN ≈ (τ − 1)τN ≈ 0.75488 exp(0.56240N).
The total number of cycles for L = 1 can now be esti-
mated as φN/(2N−1). For larger L, the periodic sequence
of node values at distance L passes the node Σ L times,
and the boundary conditions are more involved. We found
numerically that for large L the factor in the exponent is
smaller. Figure 5 shows the number of cycles, averaged
over L, obtained using computer simulations. The asymp-
totic increase is not yet visible for these small values of N .

4.4 Case 4: Boolean function f11 at Σ

The last canalyzing function that we want to consider,
produces 1 if the first input is 1 and inverts the second
input otherwise. This means that the update rule gives 0
if and only if the first input is 0 and the second one is 1.
The system has a fixed point with all states being 1. Let us
consider the fate of a node value 1 on a cycle as we iterate
the network. This 1 moves from site x to site x− 1 during
one time step. When it reaches the node G1 it produces
a 1 at Σ. Thus, a 1 comes back to its original place after
N −L steps. Similarly, a 0 comes back to its original place
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Fig. 5. Mean number of cycles per network for the canalyzing
function f1 at Σ, averaged over all possible values of L.

after N − L steps, if there was a 1 at this place L time
steps before. We now show that the period of a cycle is
indeed N −L (or a divisor thereof) by demonstrating that
at each site there must be a 1 L time steps after a 0.
Consider site Σ, and assume that its state is 0. This 0 can
only have been produced if there is a 0 at site L. L time
steps later, there must consequently be a 1 at site Σ.

In order to estimate the number of cycles, let us con-
sider the sequence of states at G1 every L time steps for N
such time intervals. For L = 1 the number of states on cy-
cles is equal to the number of these sequences with an
appropriate boundary condition. Such sequences have no
two 0s next to each other and their number satisfies the
recursion relation φN = φN−1 + φN−2, since a sequence
of length N can be generated either by adding a 1 after
the first 0 in the sequence of length N − 1 or by adding
a 10 after the first 0 in a sequence of length N − 2. The
recursion relation can be shown to hold for L 	 N , only a
prefactor of the solution changes. Note that the recursion
relation is identical to the one in the case of the Boolean
function f4. The total number of cycles diverges therefore
as e0.48121N/N , just as before.

The results for all four canalyzing functions indicate
that the mean number of cycles per network, averaged
over all canalyzing functions and values of L, should in-
crease at least as fast as e0.5624N/N2, since a fraction of
the order 1/N of all networks of size N have of the order
of e0.5624N/N cycles. However, this behavior is not yet
visible for the N values used in our computer simulations
shown in Figure 6.

4.5 Case 5: Boolean function f9 at Σ

If the Boolean function at Σ is reversible, the dynamics
on the system is reversible. All states are on cycles. Since
a network with L ≤ M + 2 maps on a network with L >
M + 2 under time reversal, it is sufficient to consider the
case L ≤ M + 2, or equivalently

1 ≤ L ≤ [N/2]. (11)
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function at Σ, averaged over all possible values of L.

M ′ L′

G2 : Σ−1

G1
G′

1

Fig. 7. The network corresponding to the time reversed net-
work in Figure 3 for a reversible Boolean function at Σ.

Figure 7 shows the time reversed network, with

L′ = M + 2 = N − L

M ′ = L − 2. (12)

Note that M ′ is −1 if the additional link is a self link.
If g is the greatest common divisor of N and L, the

set of all nodes splits into g independent subsystems
with N/g nodes, just as for the canalyzing functions. In
contrast to the canalyzing functions, each state is now
part of a cycle. The most striking finding is that there
occur now cycles of a length of the order of 2N . Figure 8
shows the result of computer simulations for different val-
ues of N . One can see that for each of these N values,
there exist cycles of a length close to 2N . Figure 9 shows
the mean number and length of cycles as a function of N .
The mean cycle number

C̄N =
1

N − 1

N−1∑

L=1

CN,L

shows an exponential increase for N values that are not
prime numbers. The mean cycle length P̄N can be defined
in different ways:
(a) As the mean over all cycle lengths of all systems,

P̄
(1)
N =

∑
L CN,LP̄N,L
∑

L CN,L
.
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Fig. 8. Number of cycles with cycle length within intervals
[2n, 2n+1) for a reversible Boolean function at Σ, for selected
values of N , averaged over the possible values of L.

With this definition, we obtain

P̄
(1)
N C̄N = 2N . (13)

This dependence can clearly be seen in the top part of
Figure 9, where the mean cycle length is largest when N
is a prime number and when the cycle number is smallest.
(b) As the mean cycle length of a system, averaged over L,

P̄
(2)
N =

1
L

P̄N,L.

This definition is more physical, since each system should
be given the same weight. With this definition, the data
points for all N lie above an exponentially increasing
curve, as shown in the bottom part of Figure 9.

A third possible definition of the mean cycle length,
which assigns to each possible initial state the same
weight, leads to even larger values.

The occurrence of extremely long periods in systems
like these has been known for some time and has been
used in a certain class of random number generators,
see [10], the so-called Additive Lagged Fibonacci Gener-
ators. In these random number generators, a sequence of
m-bit numbers xk is generated by the rule

xk = xk−p + xk−p+q mod m.

Setting m = 1, p = N , q = L, and using the reversible
function f6, this rule gives the sequence of bits generated
at node Σ in our network.

4.6 General considerations

We conclude this section by deriving some general results
for the numbers and lengths of cycles in our simple net-
works. First, we find a lower bound for the number of cy-
cles for a loop with an extra link for certain values of N .
We start with

C2L
2N ≥ CL

N · CL
N/2.
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The system splits into 2 independent subsystems, and the
inequality arises because the cycles of the subsystems can
have several values of the phase difference, if their periods
have a common divisor. Iterating this equation gives

C2νL0
2νN0

≥
(
CL0

N0
/
√

2
)2ν

≡ C2νN0
0 = CN

0 .

Now, a given value of L occurs with probability 1/N in a
system of size N , and therefore the mean number of cycles
in a system of size N = 2νN0 satisfies the inequality

CN ≥ 1
N

(C0)N ≡ 2AN/N. (14)

The number of cycles increases exponentially with N .
Next, we note that we find always an average of one

fixed point per network. For a canalyzing Boolean func-
tion at Σ, we always find an average number of 1/4 cycles
of length 2. The first finding can be understood in the
following way. If we look at the state space and consider
the ensemble of all networks of size N with all combina-
tions of update functions, the successor of a state will be
with equal probability every possible state, including it-
self [5]. The probability that a state is a fixed point is
therefore 1/2N . Summing over all states gives an average
of one fixed point.

Now let us consider cycles of length 2. First of all,
there are no such cycles with reversible update rules. As
a matter of fact, depending on L, for the inputs of Σ on

a cycle of length 2 there exist only two possibilities: they
alternately take on the values (0, 1) and (1, 0) or they al-
ternate between (0, 0) and (1, 1). In both cases the output
of the reversible function would be constant, thus leaving
no space for a cycle of length 2.

We turn to the canalyzing functions. Simulation data
show that on average every fourth network has a cycle of
length 2. We want to give two different proofs for this.
Consider a state g(i). As with the fixed points, the sta-
tistical probability that g(i) is followed by g(j) under the
dynamics, is 1/2N [5]. We denote the corresponding set of
networks that make this transition by Nij . The question
now is, what is the probability that the state g(j) returns
to g(i) in the next step. For the networks in Nij to per-
form the transition i �→ j for fixed i and j the update rule
at Σ is fixed for one of 4 input states, thus ruling out 4
out of the 8 canalyzing Boolean functions. Thus the prob-
ability, that Nij leads g(j) to g(i) at the next time step is
4/(8 · 2N ). Altogether we get the following result for the
probability p2 of a cycle of length 2:

p2 =
1
2

∑

i,j

1
2N

1
2 · 2N

= 1/4. (15)

We can also see this directly, by constructing explic-
itly the cycles of length 2. These cycles are sequences of
alternating 0 and 1s, which have two 0s (or two 1s) to-
gether at Σ for odd Ns. Without loss of generality, we use
only truth functions as update rules at nodes with one in-
put. Σ has either inputs alternating between 0, 1 and 1, 0
for odd L, or inputs alternating between 0, 0 and 1, 1 for
even L, and the output must be alternating 0s and 1s.
In each mentioned case, for any fixed N and L, two of
eight canalyzing functions are suitable. For example, for
an odd N and odd L the output for the input state 01 (the
right value is the first input), has to be 1; it has to be 0
for 10. Thus for all Ls and for all possible update rules the
fraction of networks with a length 2 cycle is 2/8 = 1/4.

5 Conclusions

In this paper, we have investigated mainly analytically the
effect of adding one additional link to networks consisting
of one or two simple loops. There was a big difference in
the typical numbers and lengths of cycles between net-
works with a canalyzing Boolean function and networks
with a reversible Boolean function. For two loops with a
cross-link, a reversible coupling function between the two
loops leads to results very similar to those for two in-
dependent loops. However, a canalyzing function reduces
the typical values of cycle length and number to those
of a single loop. One gets an increased number of cycles
for N1 = N2. For canalyzing functions one finds several
dominant cycle lengths.

For loops with an additional link, one of the canalyz-
ing functions can freeze the entire network, while other
canalyzing functions produce cycles of a period up to 2N .
The number of cycles increases exponentially with N , but
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not as fast as for simple loops. The most interesting find-
ing was that a reversible function generates mean cycle
lengths that increase exponentially with the network size.

We thus have shown that even very simple networks
consisting of relevant nodes with reversible couplings have
a mean cycle length and a mean cycle number that in-
crease faster than any power law in network size, features
that are also found in Kauffman networks [4–6]. On the
other hand, canalyzing couplings tend to reduce the cy-
cle length and number compared to the case where the
additional link is absent. The short cycle length in sys-
tems with only canalyzing functions might be a reason
why canalyzing functions are frequent in nature [11]. It
will be interesting to see how the two contrary effects of
canalyzing and reversible couplings work together in more
complicated relevant components of larger networks.

Our calculations give some indications for why it is
so difficult to measure correct values for cycle numbers
and lengths in computer simulations of critical Kauffman
networks. Even for the simple components considered in
this paper, there are cycles that can only be reached from
a small fraction of initial conditions. For instance, in the
case of two loops with a cross-link, many cycles have a
frozen first loop. However, these cycles are only reached
from initial conditions with a frozen first loop, which are
a fraction of the order 2−N1 of all initial conditions. Fur-
thermore, for combinations of N1 and N2, or of N and L,
which have many common divisors, there exist particu-
larly large numbers of cycles. By sampling only a small
number of initial conditions, it will never be possible to
find all these cycles. For these reasons, we have always per-
formed a complete search of state space in the simulations
reported in this paper.

The findings of this paper teach us a third lesson:
Even with a thorough exploration of state space, it can be
difficult to see the true asymptotic behavior of mean cy-
cle numbers or sizes, as demonstrated in the case of a loop

with an additional link and with a canalyzing coupling.
Different contributions for different coupling functions and
for different values of L can increase in a different way
with N . The contribution that increases fastest will only
dominate if N becomes very large. Only then will the true
asymptotic behavior become visible.

One of the main conclusions of these findings is that a
purely numerical investigation of Kauffman networks will
never produce reliable results. It is essential to develop
analytical approaches that help to understand the impor-
tant features of these systems. Up to now, there exist few
analytical studies, and many more will be needed before
Kauffman networks will be fully understood.
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